
USC-IR
Release 0.4.0-a

winter, zkldi

Jun 10, 2023

COMMON:

1 Spec Information 3

2 Common API Information 5
2.1 Architecture . 5
2.2 Request Format . 5
2.3 Response Format . 5
2.4 Endpoint Commonalities . 6
2.5 Shared Structures . 7

3 Heartbeat - GET / 9
3.1 Expected Request . 9
3.2 Expected Response . 9

4 Chart Tracked - GET /charts/:chartHash 11
4.1 Expected Request . 11
4.2 Expected Response . 11

5 Record - GET /charts/:chartHash/record 13
5.1 Expected Request . 13
5.2 Expected Response . 13

6 Leaderboard - GET /charts/:chartHash/leaderboard 15
6.1 Expected Request . 15
6.2 Expected Response . 15

7 Score Submission - POST /scores 17
7.1 Expected Request . 17
7.2 Expected Response . 19

8 Replay Submission - POST /replays 21
8.1 Expected Request . 21
8.2 Expected Response . 21

9 IR Globals 23
9.1 IRData . 23
9.2 Request Functions . 24

10 Result Screen 25
10.1 ServerScore . 25

11 Song Wheel 27

i

ii

USC-IR, Release 0.4.0-a

This is documentation for the USC-IR (unnamed_sdvx_clone Internet Ranking) spec. This standard should be followed
exactly, to avoid incompatibilities with clients and skins.

COMMON: 1

USC-IR, Release 0.4.0-a

2 COMMON:

CHAPTER

ONE

SPEC INFORMATION

The USC-IR spec follows Semantic Versioning.

The current version of this spec is v0.4.0-a.

There’s not really much more to it! This is intended to be a simple, clean spec, implemented by anyone.

3

https://semver.org

USC-IR, Release 0.4.0-a

4 Chapter 1. Spec Information

CHAPTER

TWO

COMMON API INFORMATION

2.1 Architecture

USC-IR operates over HTTP or HTTPS. The USC client will make requests to endpoints at given times, such as
POSTing /score/submit when a score is achieved.

USC-IR only makes use of GET and POST, to simplify implementation.

USC-IR is intended to operate on top of HTTP(S), to simplify its implementation. Any request that is received by the
server successfully should be responded to with a HTTP 200 OK. Rejection reasons that are not a failed request should
be indicated using a USC-IR status code in the response body, as detailed in Response Format.

Note: Any HTTP response bearing a non-200 status code will be interpreted by the client as a generic failure, and
will not be consumed.

2.2 Request Format

Unless otherwise specified, all data sent to the server is expected to be in JSON format, with Content-Type:
application/json set in request headers.

To authenticate with the server, users are expected to send an Authorization header, containing Bearer <token>.

How the server distributes these tokens is up to them, but they are to be used to authenticate who is making what
request.

The body sent is dependent on the endpoint targeted by the request.

2.3 Response Format

All data returned from the server is in JSON format.

Note: As noted above, if the server returns a HTTP code other than 200 OK , the response body will not be consumed.

The below table indicates the two-digit USC-IR status codes to be used by the server in response to a request.

5

USC-IR, Release 0.4.0-a

statusCode Title Meaning
20 Success Request succeeded.
22 Accepted Request was received, but not yet acted upon.
40 Bad Request The request was malformed.
41 Unauthorized No token, or an invalid token, was provided.
42 Chart Refused The server is not accepting scores for this chart.
43 Forbidden The token has been banned.
44 Not Found The requested item was not found.
50 Server Error The server encountered an error while handling the request.

2.3.1 Always Present Keys

Returned JSON objects will always have these keys.

Key Type Description
statusCode 20 | 22 | 40 | 41 | 42 | 43 |

44 | 50
See table above.

description String A human-readable message, which can be displayed to
the user.

2.3.2 Conditional Keys

These are keys that are only present under certain scenarios, such as keys that make no sense under certain statusCode
s.

Key Type Description
body Object Must be present on statusCode 2X. Contains the re-

sults of your request (such as score data, chart data, etc.)

2.4 Endpoint Commonalities

All endpoints must obey the following assumptions:

1. All endpoints are authenticated. This means the Authorization header must be provided in the request, and that
the server must respond with 41 Unauthorized or 43 Forbidden as and when appropriate.

2. An endpoint should respond with 40 Bad Request for any request which has parameters that are invalid - this
includes parameters which the server does not support, for instance an unsupported leaderboard mode.

6 Chapter 2. Common API Information

USC-IR, Release 0.4.0-a

2.5 Shared Structures

Several structures will be reused multiple times in this specification. Any such structures are detailed below, to avoid
repetition.

This structure is the common format for a ‘score’ that the server will respond with whenever a score is requested.

Table 1: Server Score Object
Key Type Description
score Integer [0, 10’000’000] The numeric score the user achieved.
lamp 0 | 1 | 2 | 3 | 4 | 5 The lamp for this score. They correspond to the fol-

lowing; “NO PLAY”, “FAILED”, “CLEAR”, “EXCES-
SIVE CLEAR”, “ULTIMATE CHAIN”, “PERFECT
ULTIMATE CHAIN”.

timestamp Integer Time in seconds elapsed since Unix Epoch, indicating
when this score was achieved.

crit Integer Hits inside the critical window.
near Integer Hits inside the near window.
error Integer Missed notes.
ranking Integer The ranking for this score, (i.e. #5).
gaugeMod “NORMAL” | “HARD” |

“PERMISSIVE”,
The gauge used for this score.

noteMod “NORMAL” | “MIRROR”
| “RANDOM” | “MIR-
RAN”

The note modifier used for this score.

username String The username who achieved this score.

2.5. Shared Structures 7

USC-IR, Release 0.4.0-a

8 Chapter 2. Common API Information

CHAPTER

THREE

HEARTBEAT - GET /

Used to check your connection to the server, and receive some basic information.

3.1 Expected Request

No data is expected.

3.2 Expected Response

The server should respond with 20, and some basic information in the body:

Table 1: Body
Key Type Description
serverTime Integer (Unix Seconds) The current time according to the server.
serverName String The name of the server. This may be displayed to the

user.
irVersion String The version of this spec implemented by the IR.

9

USC-IR, Release 0.4.0-a

10 Chapter 3. Heartbeat - GET /

CHAPTER

FOUR

CHART TRACKED - GET /CHARTS/:CHARTHASH

Used to check if the server will accept a score for a given chart in advance of submitting it.

4.1 Expected Request

Request data is entirely in the URL; viz. the value of :chartHash should be the chartHash you are interested in.

4.2 Expected Response

If the server would refuse a score for this chart (e.g. it is blacklisted, or the server does not know it and does not
accept unknown charts), respond with statusCode 42.
Otherwise, respond with statusCode 20. The difference between a tracked chart and an unknown chart on a server
that accepts unknown charts may be distinguished in the response description.

11

USC-IR, Release 0.4.0-a

12 Chapter 4. Chart Tracked - GET /charts/:chartHash

CHAPTER

FIVE

RECORD - GET /CHARTS/:CHARTHASH/RECORD

Used to retrieve the current server record for the chart with the specified hash.

5.1 Expected Request

No data is expected.

5.2 Expected Response

If the server refuses to track this chart, e.g. because it is blacklisted, it should respond with statusCode 42

Otherwise, if the server does not know of this chart, it should respond with statusCode 44. This is also the correct
response if the server is aware of the chart but has no scores on it.
Otherwise, the server will respond with 20, and the following information in the body:

Table 1: Body
Key Type Description
record Server Score Object The current server record.

13

USC-IR, Release 0.4.0-a

14 Chapter 5. Record - GET /charts/:chartHash/record

CHAPTER

SIX

LEADERBOARD - GET /CHARTS/:CHARTHASH/LEADERBOARD

Used to retrieve some particular useful subset of the scores from the server.

6.1 Expected Request

The request is expected to include query parameters mode and n, where n is the limit of scores requested and mode is
one of the following:

mode Meaning
best Return the top n personal bests for this chart.
rivals Return the top n personal bests by players designated as this player’s rivals. (server implementation de-

pendent)

6.2 Expected Response

If the server refuses to track this chart, e.g. because it is blacklisted, it should respond with statusCode 42

Otherwise, if the server does not know of this chart, it should respond with statusCode 44.
Otherwise, the server will respond with 20, and the following information in the body:

Table 1: Body
Key Type Description
scores Array<Server Score Ob-

ject>
The requested scores, sorted in descending order by their
score field.

15

USC-IR, Release 0.4.0-a

16 Chapter 6. Leaderboard - GET /charts/:chartHash/leaderboard

CHAPTER

SEVEN

SCORE SUBMISSION - POST /SCORES

Sends a score to the server.

7.1 Expected Request

Table 1: Root
Key Type Description
chart Chart Object Contains information about the chart being played. This

may be used by the server to accept new charts onto the
IR.

score Score Object Contains information about the users’ score.

7.1.1 Chart Object

Table 2: Chart Object
Key Type Description
chartHash String The unique identifier for the chart the user played.
artist String The artist who created the song.
title String The song title.
level Integer [1,20] The difficulty level assigned to this chart.
difficulty 0 | 1 | 2 | 3 The difficulty of the chart. 0 = NOV, 1 = ADV, 2 = EXH,

3 = INF.
effector String The effector (charter) for the chart.
illustrator String The illustrator for the chart jacket.
bpm String A string representing BPM. For charts with multiple

bpms, they are separated by a hyphen, like x.xx-y.yy.

17

USC-IR, Release 0.4.0-a

7.1.2 Score Object

Table 3: Score Object
Key Type Description
score Integer [0, 10’000’000] The numeric score the user achieved.
gauge Float The gauge the user had at the end of the chart. Depend-

ing on gameflags, this should be used by the server to
determine the clear type on the chart.

timestamp Integer (unix_seconds) Time in seconds elapsed since Unix Epoch, indicating
when this score was achieved.

crit Integer Hits inside the critical window.
near Integer Hits inside the near window.
early Integer Hits inside the near window which were early.
late Integer Hits inside the near window which were late.
combo Integer Best combo reached.
error Integer Missed notes.
options Options Object The options in use. Includes gauge type, etc, see below.
windows Object: {perfect , good

, hold , miss, slam }
Indicates what the hit windows were for this score. The
defaults are; 46, 150, 150, 300, and 84 respectively.

Warning: It is highly advised for servers to reject scores with non-standard score.windows unless specifically
implementing a hard-mode option.

Warning: score.timestamp is in unix seconds, which is different to the default in languages of the JavaScript
family (unix_miliseconds) and the .NET family (Ticks). Make sure to account for this if your server expects a
different format for time!

7.1.3 Options Object

Table 4: Options
Key Type Description
gaugeType Integer An enum value representing the gauge type used. 0 =

normal, 1 = hard. Further values are not currently spec-
ified.

gaugeOpt Integer Not used at the moment. Intended for blastive rank, etc.
in the future.

mirror Boolean If mirror is enabled.
random Boolean If random is enabled.
autoFlags Integer A bitfield of elements of the game that are automated.

Any non-zero value means that the score was at least par-
tially auto.

18 Chapter 7. Score Submission - POST /scores

USC-IR, Release 0.4.0-a

7.2 Expected Response

If the server refuses to track this chart, e.g. because it is blacklisted, or because the server does not know of it and
rejects unknown charts, it should respond with statusCode 42.
If the server has received the score, but is holding it in a queue, e.g. for servers which only begin displaying new charts
after a certain number of unique players submit scores for it, it should respond with statusCode 22. In this case,
body should be as follows, but with only sendReplay (if the server desires the replay - otherwise, an empty object.)

Otherwise, returns the standard API response, with body as follows:

Table 5: Body
Key Type Description
score Server Score Object A Server Score object representing the user’s personal

best score.
serverRecord Server Score Object A Server Score object representing the current server

record.
adjacentAbove Array<Server Score Ob-

ject>
An array of 0 to N Server Scores adjacently above the
user’s PB.

adjacentBelow Array<Server Score Ob-
ject>

An array of 0 to N Server scores adjacently below the
user’s PB.

isPB Boolean True if the score sent in the request is the user’s new PB.
isServerRecord Boolean True if the score sent in the request is the new server

record.
sendReplay String If provided, the server is requesting that the replay be

sent using the value of this key as the identifier.

Warning: body.score always returns the users PB. It does NOT necessarily return the score you sent.

Warning: Several key assumptions are made about the response by the client, which must be upheld by the server.
They are as follows:

• adjacentAbove will never contain the current server record.

• The returned scores will always descend in the set [. . . adjacentAbove, score, . . . adjacentBelow]. For
clarification, see the note below.

• An individual user should only have a maximum of one score in the above set. This is because the scores
sent should always be personal bests, not any stored score.

• As a corollary to the above, the requesting user’s scores can never appear in the adjacent scores, since their
personal best will always be contained in score.

Note: The server may decide on the value of N to use for adjacentAbove/Below. However, there is limited space to
display the scores. For maximum compatibility with skins, a value of 2 or 3 is recommended.

Note: The use for score.adjacent[Above|Below] and score.serverRecord is illustrated in the table below.

7.2. Expected Response 19

USC-IR, Release 0.4.0-a

Element Score Ranking
serverRecord LV.MINI 10,000,000 #1

. . .
adjacentAbove[0] zkldi 95,753,163 #8
adjacentAbove[1] NEIL.C 94,472,194 #9
score YOU 93,193,547 #10
adjacentBelow[0] POG 92,541,147 #11
adjacentBelow[1] CHAMP 91,260,754 #12

20 Chapter 7. Score Submission - POST /scores

CHAPTER

EIGHT

REPLAY SUBMISSION - POST /REPLAYS

Used to submit the replay for a given score when requested by the server.

8.1 Expected Request

Note: This endpoint is expected to receive data with a Content-Type of multipart/form-data, as a result of the
fact that it sends a file. Regardless, the server is expected to respond with a Content-Type of application/json.

The data will contain identifier, which is the identifier sent by the server under sendReplay after score submission.
It will also contain the replay file under the key replay.

8.2 Expected Response

If the identifier does not correspond to one of the requesting player’s scores, the server should respond with
statusCode 44.
Otherwise, if the identified score already has a replay, the server should respond with statusCode 40.
Otherwise, the server can respond with statusCode 20, and the regular format thereof. No particular data is
required in the body response.

21

USC-IR, Release 0.4.0-a

22 Chapter 8. Replay Submission - POST /replays

CHAPTER

NINE

IR GLOBALS

This page documents variables and functions added to the global scope which are accessible in every script.

9.1 IRData

IRData contains values that are relevant to skins intending to make use of the IR.

9.1.1 States

The following constants are accessible under the IRData.States table, which correspond to the USC-IR status codes
for use in skins. There are also three extended codes, which are not sent by the server but are instead used by USC. The
meaning is expressed below.

Name Value
Unused 0
Pending 10
Success 20
Accepted 22
BadRequest 40
Unauthorized 41
ChartRefused 42
Forbidden 43
NotFound 44
ServerError 50
RequestFailure 60

• Unused: IR is not being used by the client (no base URL has been specified, etc.)

• Pending: Request has not yet received a response.

• RequestFailure: The request failed for a generic reason (non-200 HTTP code, malformed response, etc.)

23

USC-IR, Release 0.4.0-a

9.1.2 Active

The value of IRData.Active is true if an IR URL has been set in the config. Otherwise, it is false.

9.2 Request Functions

The below functions are accessible under the IR table. They are used to make requests of the IR.

All of these functions are asynchronous and take a callback. This callback is called with the exact JSON returned by
the server, as a Lua table. If the request fails, the table will have statusCode 60 and a generic description.

Here is an example usage:

function heartbeatResponse(res)
if res.statusCode == IRState.Success then

game.Log(string.format("Connected to %s", res.body.serverName), game.LOGGER_INFO)
else

game.Log("Can't connect to IR!", game.LOGGER_WARNING)
end

end

IR.Heartbeat(heartbeatResponse)

9.2.1 Heartbeat(callback)

Performs a Heartbeat request.

9.2.2 ChartTracked(hash, callback)

Performs a Chart Tracked request for the chart with the provided hash.

9.2.3 Record(hash, callback)

Performs a Record request for the chart with the provided hash.

9.2.4 Leaderboard(hash, mode, n, callback)

Performs a Leaderboard request for the chart with the provided hash, with parameters mode and n.

24 Chapter 9. IR Globals

CHAPTER

TEN

RESULT SCREEN

The following fields are added to the result table on the results screen.

string chartHash //the hash of the chart that was just played
int irState //current state of the IR score submission request (a USC-IR code, including␣
→˓extensions 0/10/60)
string irDescription //the description in the IR response (nil if irState is 0 or 10)
ServerScore[] irScores //more details below, nil if irState != 20

Note: This screen is a special case where the request will be automatically performed by the game, rather than being
requested in Lua.

10.1 ServerScore

irScores is an array of ServerScores, whose structure matches the ServerScore structure detailed in the score submission
endpoint page, with these two additions:

bool yours //this score belongs to the current player
bool justSet //this score belongs to the current player, and is the score that was just␣
→˓achieved.

An example usage of these extra values can be found in the default skin: if yours is true, the score has a gold border.
If justSet is true, the timestamp is ‘Now’.

The array of scores is constructed according to specific rules which make it as easy as possible to display.
In almost all cases, the scores can simply be displayed in order.
It is constructed as follows:

• The first element is the server record, unless the server record should be omitted.

– The server record is omitted if the player’s PB is the server record, as in this case score is the server record.

• The next 0-N elements are the scores in adjacentAbove from the IR response.

• The next element is score, i.e. the current player’s PB. This element has some special added values, detailed at
the bottom of this page, for ease of use.

• The remaining 0-N elements are the scores in adjacentBelow from the IR response.

25

USC-IR, Release 0.4.0-a

26 Chapter 10. Result Screen

CHAPTER

ELEVEN

SONG WHEEL

The difficulty objects available in Lua on the Song Wheel have been modified to include a string hash which is
the chart hash, for use with the IR.

27

	Spec Information
	Common API Information
	Architecture
	Request Format
	Response Format
	Always Present Keys
	Conditional Keys

	Endpoint Commonalities
	Shared Structures

	Heartbeat - GET /
	Expected Request
	Expected Response

	Chart Tracked - GET /charts/:chartHash
	Expected Request
	Expected Response

	Record - GET /charts/:chartHash/record
	Expected Request
	Expected Response

	Leaderboard - GET /charts/:chartHash/leaderboard
	Expected Request
	Expected Response

	Score Submission - POST /scores
	Expected Request
	Chart Object
	Score Object
	Options Object

	Expected Response

	Replay Submission - POST /replays
	Expected Request
	Expected Response

	IR Globals
	IRData
	States
	Active

	Request Functions
	Heartbeat(callback)
	ChartTracked(hash, callback)
	Record(hash, callback)
	Leaderboard(hash, mode, n, callback)

	Result Screen
	ServerScore

	Song Wheel

